Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons.
نویسندگان
چکیده
Based on a detailed morphology "Full Model" of a leech heart interneuron, we previously developed a computationally efficient, morphologically inspired "Reduced Model" to expedite tuning the model to produce endogenous bursting and alternating bursting when configured as a half-center oscillator (paired with reciprocally inhibitory synapses). To find conductance density distributions that produce endogenous bursting, we implemented a genetic algorithm automated parameter search. With multiple searches, we found eight parameter sets that produced endogenous bursting in the Reduced Model. When these parameter sets were applied to the Full Model, all produced endogenous bursting, although when the simulation time was extended from 80 to 300 s, only four parameter sets produced sustained bursting in the Reduced Models. All parameter sets produced alternating half-center bursting in the Reduced and Full Models throughout the entire 300 s. When conductance amplitudes were systematically varied for each of the four sustained burster sets, the effects on bursting activity differed, both for the same parameter set in the Reduced and Full Models and for different parameter sets with the same level of morphological detail. This implies that morphological detail can affect burst activity and that these parameter sets may represent different mechanisms for burst generation and/or regulation. We also tested the models with parameter variations that correspond to experimental manipulations. We conclude that, whereas similar output can be achieved with multiple different parameter sets, perturbations such as conductance variations can highlight differences. Additionally, this work demonstrates both the utility and limitations of using simplified models to represent more morphologically accurate models.
منابع مشابه
Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
Rhythmic activity within the heartbeat pattern generator of the medicinal leech is based on the alternating bursting of mutually inhibitory pairs of oscillator heart interneurons (half-center oscillators). Bicuculline methiodide has been shown to block mutual inhibition between these interneurons and to cause them to spike tonically while recorded intracellularly (Schmidt and Calabrese, 1992). ...
متن کاملHybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by ...
متن کاملTITLE: Hybrid Systems Analysis of the Control of Burst Duration by Low-Voltage-Activated Calcium Current in Leech Heart Interneurons
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron (Hill et al. 2001) runnin...
متن کاملMyomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern-generating network. The neuropeptide myomodulin decreases the per...
متن کاملTITLE: Switching Bistable Leech Heart Interneurons with a Pulse of Current from Bursting to Silence AUTHOR:
Leech heart interneurons (HNs) control the heartbeat of the medicinal leech. They are organized in mutually inhibitory pairs, half-center oscillators (HCOs). Biophysically accurate models of HCO and HN exhibit bistability of bursting and silence. A pulse of current can switch the HN between coexisting regimes. Characteristics of a pulse switching a neuron from silence to bursting has been previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 96 4 شماره
صفحات -
تاریخ انتشار 2006